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HYBRID LOGIC IN A NUTSHELL

1. The main problem:

Asymmetry between local perspective of re-
lational semantics and global perspective of
standard modal language.

2. Bad results:

• many semantic features have no adequate
representation

• problems with suitable modal proof theory

3. Remedy:

Explicit syntactic representation of states of a
model is needed to get enough flexibility.



4. Realisation:

• external: e.g. Gabbay’s LDS’s

• internal = HYBRID LOGICS!

5. Advantages:

• more expressive language

• better behaviour in completeness theory –
more straightforward and in fact complete
theory of frame definability due to impro-
ved expressive power of the language

• proof theory – more natural and simpler

• complexity often untouched – basic logic
still decidable (sat-problem PSPACE-complete
as in standard modal logics)



WHAT’S NEXT

1. Brief history

2. Basic hybrid language and its semantics

3. Basic hybrid logic

4. Basic Extensions

• Extra modalities

• Binders

• 1-order hybrid logic

5. Decidability, complexity, interpolation



6. Proof methods

• Labels

• Sequent Calculi

• Natural Deduction

• Tableau Systems

• Resolution

• Hybrid RND-system

• Extensions

7. Case study: Branching Time

8. Case study: Interval Tense Logic
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Arthur Prior’s concepts

McTaggart’s analysis of time versus Prior’s lo-
gical systems:

• A-series (past, present, future) – T-calculus
(tenses)

• B-series (earlier/later) – I-calculus (instants)
(later called U-calculus)

I-calculus is more expressive than T-calculus

Prior’s problem: how to show the primacy of
T-calculus over I-calculus?

The solution is to develop I-calculus inside
T-calculus via extension of the language – the
third grade of tense-logical involvement (instant-
variables and ∀).



BASIC MODAL AND TENSE LOGIC

Let LM denote standard modal propositional
language i.e. abstract algebra of formulae

〈FOR,¬,∧,∨,→,�,♦〉

with denumerable set of propositional varia-
bles.

V AR = { p, q, r, . . . , p1, q1, . . .} ⊆ FOR

Nonatomic formulae are defined in ordinary way:

• if ϕ ∈ FOR, then �ϕ ∈ FOR, where � ∈
{¬,�,♦}

• if ϕ ∈ FOR and ψ ∈ FOR, then (ϕ � ψ) ∈
FOR, where � ∈ {∧,∨,→}

LT is the bimodal variant of LM with Priorean
operators G,F,H, P



Relational Semantics

The Modal Frame F = 〈 W,R〉, where W 6= ∅
is the set of states (worlds), and R is a binary
relation on W, called accessibility relation.

The Temporal Frame T = 〈 T , <〉, where T 6=
∅ is the set of time-instants and < is a binary
relation on T – the flow of time relation.

A model on the frame F (or T) is any structure
M = 〈 F, V 〉, where V is valuation function on
atoms (V : AT −→ P(W)). For Tense logic
models are defined analogously on T.



Model Satisfiability

Satisfaction of formulae in states of a model
is defined as follows:

M, w � ϕ iff w ∈ V (ϕ) for any ϕ ∈ AT
M, w � ¬ϕ iff M, w 2 ϕ
M, w � ϕ ∧ ψ iff M, w � ϕ and M, w � ψ
M, w � ϕ ∨ ψ iff M, w � ϕ or M, w � ψ
M, w � ϕ→ ψ iff M, w 2 ϕ or M, w � ψ
M, w � �ϕ iff M, w′ � ϕ for any w′

such that R(ww′)
M, w � ♦ϕ iff M, w′ � ϕ for some w′

such that R(ww′)

and for temporal operators:

M, t � Gϕ iff M, t′ � ϕ for any t′

such that t < t′

M, t � Fϕ iff M, t′ � ϕ for some t′

such that t < t′

M, t � Hϕ iff M, t′ � ϕ for any t′

such that t′ < t
M, t � Pϕ iff M, t′ � ϕ for some t′

such that t′ < t



Validity

We have also the concept of global (model)
satisfiability and of (frame or class of frames)
validity:

M � ϕ iff ∀w∈WM
,M, w � ϕ (or ‖ϕ‖M = W)

F � ϕ iff ∀M∈MOD(F),M � ϕ

where MOD(F) is the set of M built on F

F � ϕ iff ∀F∈F ,F � ϕ

|= ϕ iff ∀M,M � ϕ

K denote the set of all valid formulae in LM
and Kt denote the set of all valid formulae in
LT

|=S ϕ iff ∀M∈S,M � ϕ

where S is suitable class of structures (models
based on a class of frames)



Entailment

1. ϕ follows locally from Γ:

Γ |= ϕ iff ∀M∈S(‖Γ‖M ⊆ ‖ϕ‖M)

(or ∀M∈S, ∀w∈WM
(if M, w � Γ, then M, w � ϕ))

where S is suitable class of structures (models
based on a class of frames)

2. ϕ follows globally from Γ:

Γ ||= ϕ iff Mod(Γ) ⊆Mod(ϕ)

(or ∀M∈S (if M � Γ, then M � ϕ))

where Mod(ϕ) = {M : M � ϕ}

Note! if Γ |= ϕ, then Γ ||= ϕ



Limits of expressive strength of ordinary
modal and tense language

ϕ defines the class of structures F iff
∀F∈F ,F � ϕ

Some undefinable 1-order conditions

name condition
irreflexivity ∀x¬Rxx
asymmetry ∀xy(Rxy → ¬Ryx)
antisymmetry ∀xy(Rxy ∧ x 6= y → ¬Ryx)
intransitivity ∀xyz(Rxy ∧Ryz → ¬Rxz)
r. directedness ∀xy∃z(Rxy ∧Rzy)
dichotomy ∀xy(Rxy ∨Ryx)
trichotomy ∀xy(Rxy ∨Ryx ∨ y = z)
r. discreteness ∀xy(Rxy →

∃z(Rxz ∧ ¬∃v(Rxv ∧Rvz)))



BASIC HYBRID LOGIC

We get basic hybrid propositional modal lan-
guage LH by adding to LM (or LT):

a) the second sort of propositional symbols
called nominals. We assume denumerable set
NOM = {i, j, k, ...} such that V AR∩NOM = ∅;
V AR ∪ NOM = AT is the set of atomic for-
mulae. Members of NOM are introduced for
naming states of a model domain

b) denumerable collection of unary satisfaction
operators indexed by nominals i : (or @i). The
new clause for nonatomic formulae is:

• if ϕ ∈ FOR and i ∈ NOM , then i : ϕ ∈ FOR

and it reads "formula ϕ is satisfied in state i".



Every formula built with nominals and con-
stants only is called pure formula, every for-
mula of the shape i : ϕ or ¬i : ϕ is called sat-
formula.

Some examples:

♦(i ∧ p) – neither pure nor sat-formula

i→ ♦j – pure but not sat-formula

i : (p→ ♦q) – sat- but not pure formula

i : j, i : ♦j – both pure and sat-formulae with
important functions (express identity and ac-
cessibility of states respectively)



Note some important features of LH:

• both nominals and satisfaction operators
are genuine language elements not an extra
metalinguistic machinery

• although nominals are terms they are tre-
ated as ordinary sentences

Remark: some authors (Tzakova, Demri) pre-
fer to have weaker language with only nominals
added but without satisfaction operators as a
basic hybrid language. In what follows we use
LH∗ to denote such a language.



Semantics

The concept of a frame is the same as in ordi-
nary normal modal (or tense) logics. A model
on the frame F is any structure M = 〈 F, V 〉,
where V is valuation function on atoms (V :

AT −→ P(W)) such that for any i ∈ NOM ,
V (i) is a singleton.

Satisfaction of new formulae in states of a mo-
del is defined as follows:

M, w � i iff {w} = V (i) for any i ∈ NOM
M, w � i : ϕ iff M, w′ � ϕ where {w′} = V (i)

The concept of global (model) satisfiability and
of (frame) validity is the same.

Note that:

M, w � i : ϕ iff M � i : ϕ



Some important features:

1. Internalization of local discourse – nominals
give direct representation of states in a langu-
age (storing model data)

2. Possible jumping to already specified states
in a model (retrieving model data)

3. Internalization of � by i : ϕ

4. Representation of identity theory (for sta-
tes) by i : j

5. Internalization of accessibility relation by
i : ♦j

One drawback: Tree model property fails!

Points 2-5 due to presence of satisfaction ope-
rators.



BASIC HYBRID LOGIC

Note that satisfaction operators are indeed mo-
dal – in fact normal modal – constants; they
satisfy:

(K) i : (ϕ→ ψ) → (i : ϕ→ i : ψ) and

(RG) i : ϕ is valid whenever ϕ is valid

Let KH denote the set of all valid formulae in
LH.

Note: K ⊆ KH

KH decidable (PSPACE-complete as ordinary
K)



Expressivity

1. New tautologies – an example:

♦(i ∧ p) ∧ ♦(i ∧ q) → ♦(p ∧ q)

2. New frame-defining formulae – e.g.:

Irreflexivity – i→ ¬♦i

Asymmetry – i→ ¬♦♦i



Complete Hilbert Calculus for KH

HKH – axiomatic version of KH consists of:

1. Axioms of CPL

2. Axioms of K:

(K) �(ϕ→ ψ) → (�ϕ→ �ψ)

(Pos) ♦ϕ↔ ¬�¬ϕ

3. Specific Hybrid Axioms:

(K:) i : (ϕ→ ψ) → (i : ϕ→ i : ψ)
(Selfdual:) i : ϕ↔ ¬i : ¬ϕ
(Intro:) i ∧ ϕ→ i : ϕ
(Ref:) i : i
(Agree) i : j : ϕ↔ j : ϕ
(Back) ♦i : ϕ→ i : ϕ



4. Rules:

(MP) ` ϕ→ ψ,` ϕ / ` ψ

(RG) ` ϕ / ` �ϕ

(RG:) ` ϕ / ` i : ϕ

(SUB) ` ϕ / ` e(ϕ), where e : V AR −→ FOR,
but e : NOM −→ NOM

Theorem (Completeness): The above axio-
matic system is strongly complete for KH

but something more is needed for extensions of
KH, let HK+

H be HKH with 2 additional rules:

(NAME) ` i : ϕ / ` ϕ, provided i /∈ ϕ

(BG) ` i : ♦j → j : ϕ / ` i : �ϕ, provided i 6= j

and j /∈ ϕ

Lemma: Th(HKH)=Th(HK+
H)



Lemma: The following are HKH-theses:

(Sym:) i : j ↔ j : i

(Tran:) i : j ∧ j : k → i : k

(Nom1) j : ϕ ∧ j : i→ i : ϕ

(Nom2) j : ϕ ∧ i : j → i : ϕ

(Bridge) ♦i ∧ i : ϕ→ ♦ϕ

Lemma: The following rules are admissible in
HKH (derivable in HK+

H):

(NAME’) ` i→ ϕ / ` ϕ, provided i /∈ ϕ

(PASTE) ` i : ♦j ∧ j : ϕ → ψ / ` i : ♦ϕ → ψ,
provided i 6= j and j /∈ ϕ,ψ



Proof of the (Bridge) and (MAME’)

1. ` i ∧ ¬ϕ→ i : ¬ϕ (Intro:)
2. ` ♦(i ∧ ¬ϕ) → ♦i : ¬ϕ (1 RM)
3. ` ♦i ∧�¬ϕ→ ♦(i ∧ ¬ϕ) (K-thesis)
4. ` ♦i ∧�¬ϕ→ ♦i : ¬ϕ (2,3 Syll)
5. ` ♦i : ¬ϕ→ i : ¬ϕ (Back)
6. ` ♦i ∧�¬ϕ→ i : ¬ϕ (4,5 Syll)
7. ` ♦i ∧ ¬i : ¬ϕ→ ¬�¬ϕ (6 CP)
8. ` ♦i ∧ i : ϕ→ ♦ϕ (7 Selfdual:, Pos)

1. ` i→ ϕ (Premise, i /∈ ϕ)
2. ` i : (i→ ϕ) (1 RG)
3. ` i : i→ i : ϕ (2 K:)
4. ` i : i (Ref:)
5. ` i : ϕ (3,4 MP)
6. ` ϕ (1,5 NAME)



Completeness

Theorem (Pure completeness): Let Γ be
any set of pure-formulae, then HK+

H + Γ is
strongly complete for the class of frames on
which Γ is valid.

Definition:

• Γ is named iff it contains at least one no-
minal

• Γ is ♦-saturated iff for all i : ♦ϕ ∈ Γ, there
is a nominal j such that i : ♦j ∈ Γ and
j : ϕ ∈ Γ

Lindenbaum Lemma Every HK+
H+Γ-consistent

set can be extended to a named, ♦-saturated,
maximal, HK+

H + Γ-consistent set.



Definition: Canonical Model for HK+
H + Γ-

maximal, consistent set ∆ is defined as Mc =
〈 Wc,Rc, Vc〉 where:

Wc = {| i |: i is a nominal } and
| i |= {j : i : j ∈ ∆}

Rc(| i |, | j |) iff i : ♦j ∈ ∆

Vc(p) = {| i |: i : p ∈ ∆}

Vc(i) = {| i |}

Truth Lemma i : ϕ ∈ ∆ iff Mc, | i | |= ϕ

Frame Lemma if ∆ is ♦-saturated HK+
H +Γ-

maximal, consistent set, then the frame of Mc

satisfies all properties defined by Γ

This result leads to better completeness theory
due to more general theory of frame definabi-
lity than standard modal logic provides. The
following table lists some examples:



pure axioms
name axiom frame-condition
(D’) �i→ ♦i seriality
(DC’) ♦i→ �i p. functionality
(T’) �i→ i reflexivity
(�T’) �(�i→ i) almost-reflexivity
(IRR) i→ �¬i irreflexivity
(4’) �i→ ��i transitivity
(4C’) ��i→ �i density
(INTR) ¬�i→ ��i intransitivity
(B’) i→ �♦i symmetry
(AS) i→ ��¬i asymmetry
(ANT) i→ �(♦i→ i) antisymmetry
(5’) ♦i→ �♦i euklideaness
(Un) ♦i universality
(3’) �(�i→ j)

∨�(�j → i) s. connectedness
(L’) �(�i ∧ i→ j)

∨�(�j ∧ j → i) w. connectedness
(DI) i : ♦j ∨ j : ♦i dichotomy
(TRI) i : ♦j ∨ j : ♦i ∨ i : j trichotomy



Note in particular that:

1. Many conditions from the table are not de-
finable in LM e.g.: irreflexivity, intransitivity,
asymmetry, antisymmetry, universality, dicho-
tomy and trichotomy.

2. All conditions except (DI) and (TRI) are
definable in LH∗.

3. Pure-formulae define only 1-order proper-
ties – but not all! for instance not all Sahlqvist
formulae have pure formulae equivalents e.g.
Church-Rosser property, Predecessors, Right-
(Left)-directedness.

• Church-Rosser property (or connectedness):

∀xyz(Rxy ∧Rxz → ∃v(Ryv ∧Rzv))

is defined in LM by (CR) ♦�ϕ→ �♦ϕ but
♦�i→ �♦i doesn’t work.



• Predecessors – ∀x∃yRyx is not defined in
LM either (although the converse is).

• Right-directedness – ∀xy∃z(Rxz ∧ Ryz) is
not definable in LM. It is definable in LH by
i : �p→ j : ♦p but it is not pure-formula so
pure-completeness theorem does not apply.
Left-directedness is undefinable in LH too.

Note! (CR) is a special case of a Geach Axiom:
♦m�nϕ → �s♦tϕ which defines frame proper-
ties expressed in short by:

∀xyz∃v(Rmxy ∧Rsxz → Rnyv ∧Rtzv)

Every instance of Geach Axiom is also an in-
stance of Sahlqvist formula.



As a result we have a strange consequence:

Theorem (Pure completeness): Let Γ be
any set of pure-formulae, then HK+

H + Γ is
strongly complete for the class of frames defi-
ned by Γ.

Theorem (Sahlqvist completeness): Let Γ

be any set of Sahlqvist-formulae, then HK+
H+Γ

is strongly complete for the class of frames
defined by Γ.

but

Completeness fails for some combinations of
pure- and Sahlqvist-formulae! e.g. HK+

H+(CR)+

(NG) is incomplete

where (NG) ♦(i ∧ ♦j) → �(♦j → i) defines

∀xyzu(Rxy ∧Rxz ∧Ryu ∧Rzu→ y = z)



The impact of past operators

LTH is strictly more expressive than LH:

1. : is dispensable in the presence of past-
operators, e.g. trichotomy may be defined by
Pi ∨ i ∨ Fi.

2. Some frame-conditions undefinable in LH

by pure-formulae (although definable in LM)
are definable, e.g. Church-Rosser property (or
connectedness) is defined by Fi ∧ Fj → F (i ∧
FPj).

3. Some frame-conditions are definable that
are not definable in any of LM, LT, LH, e.g.:

– left directedness ∀xy∃z(z < x∧ z < y) is defi-
ned by PFi



– right discreteness

∀xy(x < y → ∃z(x < z ∧ ¬∃v(x < v < z)))

is defined by i : (F> → FHH¬i)
(or i→ (F> → FHH¬i))

In fact every Sahlqvist-formula have pure-formula
equivalent in LTH, so we have:

Theorem (Sahlqvist/pure completeness):
Let Γ be any set of Sahlqvist- or pure-formulae,
then HK+

H+Γ is strongly complete for the class
of frames defined by Γ.

Disadvantages – KtH is still decidable but
EXPTIME-complete, whereas Kt is in PSPA-
CE (as K and KH)



LANGUAGE EXTENSIONS

• Extra modalities

1. Global modalities

2. Difference modalities

• Modal Binders

• 1-order modal hybrid logic



Global Modality

LHA is LH with universal modality A or (in-
terdefinable) existential modality E defined as
follows:

M, w � Aϕ iff M, w′ � ϕ for any w′

M, w � Eϕ iff M, w′ � ϕ for some w′

Note that LH∗A = LHA since : is definable:

i : ϕ := A(i→ ϕ) := E(i ∧ ϕ)

KHA is decidable but these modalities are very
strong – even KA (no nominals) is EXPTIME-
complete. Both KHA and KtHA are in the same
complexity class as plain KA.



Difference Modality

LMD is LM with difference possibility D or (in-
terdefinable) difference necessity D̄ defined as
follows:

M, w � Dϕ iff M, w′ � ϕ for some w′ 6= w

M, w � D̄ϕ iff M, w′ � ϕ for any w′ 6= w

Note that LMD is strictly stronger than LMA

since A is definable by D̄ but not otherwise:

Aϕ := ϕ ∧ D̄ϕ

In fact in LMD we can even simulate nominals:

p is true at exactly one point iff
Ep ∧A(p→ ¬Dp) holds.



On the other hand D is eliminable in LHAD.
As a result we have the following hierarchy of
expressivity:

LMA < LMD = LMAD = LHAD = LHA = LH∗A

We have also:

KMD = KHA

Note also that Dϕ is definable in Kt4.3 by
Pϕ ∨ Fϕ, so on linear frames LTH,LTHD and
LT have the same expressivity.



Modal Binders

Why not to quantify over states?

So the next step is:

• add the third sort of atoms SV AR = {u, v, ...}
(state variables) to the basic hybrid langu-
age

• add some binders – quantifiers ∀, ∃ or local
binder ↓

The definition of the frame and model is the
same as for LH but we need also the concept
of assignment a for M which is a mapping
a : SV AR −→ W . The satisfaction of the for-
mula is now defined for a model and an assi-
gnment. In particular, for the new elements we
have the following conditions:



M, a, w � u iff w = a(u)

M, a, w � ∀uϕ iff M, auw′, w � ϕ for all w′

M, a, w � ∃uϕ iff M, auw′, w � ϕ for some w′

M, a, w �↓ uϕ iff M, auw, w � ϕ

where auw is an u-variant of a, namely auw(u) =

w and auw(v) = a(v) for any v 6= u.

Note that ↓ is self-dual

We should also admit free state-variables as
arguments of :, so the more general condition
is:

M, a, w � s : ϕ iff M, a, w′ � ϕ where
s ∈ NOM∪SV AR and {w′} = V (s) or w′ = a(s)



Let LH∀,LH↓,LH↓∀ denote Hybrid languages with
added binders and LH∗∀,LH∗↓,LH∗↓∀ respective
languages without satisfaction operators.

The difference between ↓ and ∀ is between lo-
cal and global binding. LH↓ enable to name
current state (↓ binds state variable to current
state)

Fact: LH∗∀ is strictly stronger than LH∗↓, since:

1. ↓ is definable in LH∗∀: ↓ uϕ := ∃u(u ∧ ϕ)

but

2. LH∗↓ is preserved under generated submo-
dels whereas LH∗↓∀ is not.

(the same applies to LH∀,LH↓)

Corrolary: LH∗∀ = LH∗↓∀ and LH∀ = LH↓∀



Definability of satisfaction operators

Note! : is not definable in LH∗∀

Fact: LH∀ = LH∗↓A = LH∗∀A = LH↓A = LH∀A

Recall that A defines sat-operator; moreover:

1. ∀ is defined in LH∗↓A:

∀uϕ :=↓ vA ↓ uA(v → ϕ), where v /∈ ϕ

and

2. A is defined in LH∀:

Aϕ := ∀u, u : ϕ

Both KH↓ and KH∀ is undecidable (in fact even
KH∗∀ is undecidable!)



Axiomatization

Let KH∀,KH↓,KH↓∀ denote basic Hybrid logics
with added binders. HKH↓ is obtained from
HKH by addition of:

(DA) i : (↓ uϕ↔ ϕ[u/i])

(S-D↓) ↓ uϕ↔ ¬ ↓ u¬ϕ

Pure-completeness holds for HK+
H↓ exactly as

for HK+
H. What’s more we can axiomatize HK+

H↓
without (BG) and (NOME) but using more
standard rules (no side conditions). Just add
to HKH↓:

(Name ↓) `↓ u(u→ ϕ) → ϕ , provided u /∈ ϕ

(BG ↓) ` i : � ↓ u i : ♦u

(RG ↓) ` ϕ / `↓ uϕ



Pure-completeness of HK+
H↓ opens the question

if we have something more. There are two po-
ints worth noticing:

1. LH is more expressive (than LM) at the level
of frames but even LH∗↓ is more expressive at
the level of models! For example we can distin-
guish between reflexive and nonreflexive states
in a model (↓ u♦u and ↓ u¬♦u)

2. Binary temporal operators U (Until) and S

(Since) are definable in LH↓ or LTH∗↓ :

U(ϕ,ψ) :=↓ u♦ ↓ v(ϕ ∧ u : �(♦v → ψ))

U(ϕ,ψ) :=↓ uF (ϕ ∧H(Pu→ ψ))

M, t � U(ϕ,ψ) iff M, t′ � ϕ for some t′ such
that Rtt′ and M, t′′ � ψ for every t′′ such that
Rtt′′ and Rt′′t′



Tenses

Standard Priorean LT already have deictic na-
ture but has strong limitation in expressing lan-
guage tenses.

LTH yields referential perspective which makes
possible to express Reichenbachian analysis of
tenses (see the table).

The addition of ↓ enrich further the referential
possibilities of basic hybrid logic by operating
with storing and retrieving system. Moreover,
: is eliminable in LTH↓ in all nominal-free sen-
tences.



refer. tense example formula
E-R-S Pluperfect I had seen P (i ∧ Pϕ)
E,R-S Past I saw P (i ∧ ϕ)
R-E-S F-in-the-P I’d see P (i ∧ Fϕ)
R-S,E F-in-the-P I’d see P (i ∧ Fϕ)
R-S-E F-in-the-P I’d see P (i ∧ Fϕ)
E-S,R Perfect I’ve seen Pϕ
S,R,E Present I see ϕ
S,R-E Prospective I’m going to Fϕ
S-E-R Fut. perfect I’ll have F (i ∧ Pϕ)
S,E-R Fut. perfect I’ll have F (i ∧ Pϕ)
E-S-R Fut. perfect I’ll have F (i ∧ Pϕ)
S-R,E Future I’ll see P (i ∧ ϕ)
S-R-E F-in-the-F abiturus ero F (i ∧ Fϕ)

where:

S – the point of speech

E – the point of event

R – the point of reference



Axiomatization of KH∗∀

HKH∗∀ consists of axioms and rules of HK plus
the following axioms:

(Q1) ∀u(ϕ→ ψ) → (ϕ→ ∀uψ),
where u /∈ V F (ϕ)

(Q2) ∀uϕ→ ϕ[u/s]

(Name) ∃u, u

(Nom) ∀u(♦m(u ∧ ϕ) → �n(u→ ϕ)), m, n ∈ ω

(Barcan) ∀u�ϕ→ �∀uϕ

and

(Gen) if ` ϕ, then ` ∀uϕ



Expressiveness of KH∀

All properties not expressible as pure-formulae
in LH (e.g. Geach axioms, Directedness) are
expressible in LH∀ as a PUENF-formula
∀u1, ..., um∃v1, ..., vnϕ, where ϕ has no quanti-
fiers, propositional variables, nominals. e.g.:

• Church-Rosser property – ∀u1u2u3∃v
(u1 : ♦u2 ∧ u1 : ♦u3 → u2 : ♦v ∧ u3 : ♦v)

• Predecessors – ∀u∃v, v : ♦u

• Right-directedness –
∀u1u2∃v(u1 : ♦v ∧ u2 : ♦v)

Theorem: Frame condition is defined by PUENF-
formula iff it is UE-closure of strongly bounded
1-order formula.

Conjecture: every Sahlqvist-formula is expres-
sible by PUENF-formula



Additional completenss result for HKH

Every PUENF-formula (PF) ∀u1, ..., um∃v1, ..., vnϕ
corresponds to existential saturation rule (RPF)
of the form:

If ` ϕ[u1/i1, ..., um/im, v1/j1, ..., vn/jn] → ψ, then
` ψ provided j1, ..., jn are distinct, unequal to
i1, ..., im and do not occur in ψ

For example for Church-Rosser we have:

If ` (i1 : ♦i2 ∧ i1 : ♦i3 → i2 : ♦j ∧ i3 : ♦j) → ψ,
then ` ψ, provided j /∈ ψ and j 6= i1, i2, i3

Lemma: If (PF) defines F, then (RPF) is ad-
missible in F

Theorem (Extended Pure completeness):
Let Γ be any set of pure-formulae and R any
set of existential saturation rules, then HK+

H +
Γ+R is strongly complete for the class of fra-
mes defined by Γ and R.



Stronger binders

M, a, w � Πuϕ iff M, auw′, w
′ � ϕ for all w′

M, a, w � Σuϕ iff M, auw′, w
′ � ϕ for some w′

M, a, w �⇓ uϕ iff M, auw, w
′ � ϕ for some w′

where auw is an u-variant of a, namely auw(u) =
w and auw(v) = a(v) for any v 6= u.

If we add to LH∗ any of these binders we have
the following hierarchy:

LH∗↓ < LH∗∃ < LH∗⇓ and LH∗A < LH∗Σ < LH∗⇓
since:

∃uϕ :=⇓ v ⇓ u(v ∧ ϕ) where v /∈ ϕ

Eϕ := Σuϕ where u /∈ ϕ

Σuϕ :=⇓ v ⇓ u(u ∧ ϕ) where v /∈ ϕ

but ⇓ uϕ :=↓ uEϕ, so LH∗↓A = LH∗⇓



Relations with First-order Language

1. Standard Translation ST

STt(s) = t = s
STt(p) = P (t)
STt(¬ϕ) = ¬STt(ϕ)
STt(ϕ ∧ ψ) = STt(ϕ) ∧ STt(ψ)
STt(♦ϕ) = ∃x(R(tx) ∧ STx(ϕ))
STt(s : ϕ) = STs(ϕ)
STt(Eϕ) = ∃xSTx(ϕ)
STt(↓ uϕ) = ∃x(x = t ∧ STt(ϕ))
STt(∃uϕ) = ∃uSTt(ϕ)
STt(Σuϕ) = ∃uSTu(ϕ)
STt(⇓ uϕ) = ∃x∃y(y = t ∧ STx(ϕ))

where x, y are variables distinct from term t

and not occuring in ϕ.



2. Hybrid Translation HT

HT (R(tt′)) = t : ♦t′
HT (P (t) = t : p
HT (t = t′) = t : t′

HT (¬ϕ) = ¬HT (ϕ)
HT (ϕ ∧ ψ) = HT (ϕ) ∧HT (ψ)
HT (∃uϕ) = E ↓ uHT (ϕ)

LH↓ is equivalent to strongly bounded frag-
ment of 1-order language.

LH∀ has full 1-order language expressivity.

Note: Strongly bounded fragment of 1-order
language covers all formulae built up from atoms
with the help of boolean constants and boun-
ded quantification (i.e. ∃y(Rxy∧ϕ) and ∀y(Rxy →
ϕ)) – the fragment invariant under generated
submodels.



1-order Hybrid logic QMHL

1. Vocabulary of LH↓ is enriched with:

• denumerable set of 1-order variables
FV AR = {x, y, ...}

• denumerable set of rigid constants
CON = {c1, c2, ...}

• denumerable set of nonrigid constants
FUN = {f1, f2, ...}

• denumerable set of predicate symbols of
n-arity PRED = {P1, P2, ...}

• 1-order (possibilistic) quantifiers and
equality predicate: ∀, ∃,=



2. the set of terms contains FV AR,CON and
is closed with the rule:

• if f ∈ FUN and s ∈ NOM ∪ SV AR, then
s : f is a term

Note! sat-operator is used to form both for-
mulae and terms.

3. Models are structures of the form
M = 〈 W,R, D, V 〉, where D is a nonempty
constant domain and V is defined as follows:

– V (c) ∈ D

– V (i) ∈ W

– V (Pn) ⊆ Dn ×W

– V (f) ∈ DW



An assignment a = an ∪ af , where
an : SV AR −→W and af : FV AR −→ D

The interpretation I of the term τ in a model
and under an assignment is defined as follows:

I(x) = a(x) I(c) = V (c)

I(s : f) = V (f)(w), where w = a(s) if s ∈
SV AR and {w} = V (s) if s ∈ NOM

new clauses for satisfaction are:

M, a, w � Pn(τ1, ..., τn) iff
〈I(τ1), ..., I(τn), w〉 ∈ V (Pn)

M, a, w � τ1 = τ2 iff I(τ1) = I(τ2)

M, a, w � ∀xϕ iff M, axo , w � ϕ for all o ∈ D

M, a, w � ∃xϕ iff M, axo , w � ϕ for some o ∈ D



An example: let c = Caroline and f = Miss
America, then the sentence "Caroline is the
present Miss America" is expressed by ↓ u(c =

u : f). One can check that:

|=↓ u(c = u : f) →↓ uG(c = u : f)

but

6|=↓ u(c = u : f) → G ↓ u(c = u : f)



Decidability and complexity

3 possible effects of changing ordinary modal
theories into hybrid theories:

1. The same complexity class e.g. KH

2. Worse behaviour e.g. KtH

3. Better behaviour – logics of some frame
classes.

Recall basic complexity hierarchy:

P ≤ NP ≤ PSPACE ≤ EXPTIME



Some concrete results

1. Bad impact of past operators:

Even KtH∗ with one nominal is EXPTIME-
complete whereas Kt is PSPACE-complete but
addition of : and A do not change the comple-
xity.

2. Transitive frames:

Hybrid modal logics of transitive frames are
in PSPACE even with A (recall that KHA is
EXPTIME-complete). But Kt4H is still EXPTIME-
complete.

3. Linear frames:

Hybrid logics of linear frames are NP-complete
even with ↓! (note that even KH∗↓ is undecida-
ble).



Interpolation and Beth definability

L has the Strong Interpolation property iff:
|=L ϕ→ ψ implies that |=L ϕ→ χ and
|=L χ→ ψ for some χ such that
P (χ) ⊆ P (ϕ) ∩ P (ψ).

L has the Weak Interpolation property iff:
ϕ ||= ψ implies that ϕ ||=L χ and χ ||=L ψ
for some χ such that P (χ) ⊆ P (ϕ) ∩ P (ψ).

where P is the set of propositional variables
and nominals.

Theorem: If |= is compact, then strong inter-
polation implies weak interpolation.

Theorem: KH↓ has strong interpolation; KH
has only weak interpolation.

example: there is no interpolant for i ∧ ♦i →
(j → ♦j) but if we limit P to propositional
variables only, then strong interpolation holds
also for KH.



There is an interesting relation between deci-
dability and interpolation:

Theorem: Every hybrid logic built in exten-
sion of LH∗ either is decidable or has strong
interpolation (over nominals).

Theorem: KH↓ is the least logic with strong
interpolation; any extension axiomatisable by
a set of nominal-free sentences also has this
property.

Good behaviour of QMHL in LH↓:

Theorem: Strong interpolation (and Beth de-
finability) holds for any QMHL between K and
S5.

This result is in strong contrast to ordinary
QML where we have:

Theorem (Fine): Interpolation fails for any
QML between K and S5 with constant doma-
ins and for S5 with varying domains.



PROOF METHODS

A. General application of labels (some exam-
ples):

• the set of assumptions for a formula (e.g.
Anderson/Belnap ND-systems for relevant
logics)

• the set of truth values for a formula (e.g.
Hahnle tableau systems for many-valued
logics)

• possible world (point of time) satisfying a
formula in modal (temporal) logics



B. Three kinds of labelled deduction

1. External – labels as an additional technical
apparatus

2. Internalized – labels as a part of a language
(in particular nominals in hybrid languages)

3. Mixed – both nominals (in a language) and
labels (metalinguistic devices) present:

In External approach a variety of solutions:

1. Weak labelling – labels as a very limited
device supporting proof construction, e.g.
3-labels tableau systems of Marx, Mikulas,
Reynolds for Linear Tense Logics, Multise-
quent Calculi of Indrzejczak for Temporal
Logics.



2. Strong labelling – system of labels as an
exact representation of an attempted fal-
sifying model, fusion of 2 systems: object
language calculus + algebra of labels cal-
culus, e.g. Gabbay’s theory of labelled sys-
tems, Basin, Mathews, Vigano ND-systems
for nonclassical logics.

3. Medium labelling – no special calculus for
labels but still sufficient for construction of
falsifying model e.g. Fitting’s tableau cal-
culi for modal logics.



Internalized and mixed systems for Hybrid Lo-
gics:

1. Ordinary calculi: Seligman’s sequent calcu-
lus, ND-system of Indrzejczak.

2. Sat-calculi (rules defined on sat-formulae):
Blackburn’s Tableau system, Brauner’s
ND-system, Areces’ Hylores-resolution sys-
tem, HRND-system (Hybrid resolution-ND)
of Indrzejczak.

3. Mixed calculi (with external labels): sequ-
ent system of Seligman and tableau system
of Tzakova.



SELIGMAN’S SEQUENT CALCULUS FOR KH↓

general rules

(AX) Γ ⇒ ∆, where Γ ∩∆ 6= ∅

(¬⇒) Γ⇒ ∆, ϕ
¬ϕ,Γ⇒ ∆ (⇒¬) ϕ,Γ⇒ ∆

Γ⇒ ∆,¬ϕ

(∧⇒) ϕ,ψ,Γ⇒ ∆
ϕ∧ψ,Γ⇒ ∆ (⇒∧) Γ⇒ ∆, ϕ Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ∧ψ

(∨⇒) ϕ,Γ⇒ ∆ ψ,Γ⇒ ∆
ϕ∨ψ,Γ⇒ ∆ (⇒∨) Γ⇒ ∆, ϕ, ψ

Γ⇒ ∆, ϕ∨ψ

(→⇒) Γ⇒ ∆, ϕ ψ,Γ⇒ ∆
ϕ→ψ,Γ⇒ ∆ (⇒→) ϕ,Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ→ψ



nominal rules

(N1)
1 i, j,Γ[i]⇒ ∆[i]

i, j,Γ[j]⇒ ∆[j]
(N2)

2 Γ⇒ ∆
i,Γ⇒ ∆

(N3)
3 i,Γ⇒ ∆

Γ⇒ ∆ (N4)
2 i,Γ⇒ ∆

Γ⇒ ∆

Side conditions:

1. where Γ[i] means that i occur in Γ and Γ[j]

is the result of replacement of j for i in Γ

2. where all elements of Γ∪∆ are sat-formulae

3. where i does not occur in Γ ∪∆.



modal rules

(:I⇒) i, ϕ,Γ⇒ ∆
i, i :ϕ, Γ⇒ ∆ (⇒:I) i,Γ⇒ ∆, ϕ

i,Γ⇒ ∆, i :ϕ

(:E⇒) i, i :ϕ,Γ⇒ ∆
i, ϕ, Γ⇒ ∆ (⇒:E) i,Γ⇒ ∆, i :ϕ

i,Γ⇒ ∆, ϕ

(♦⇒)1 ♦i, i :ϕ,Γ⇒ ∆
♦ϕ,Γ⇒ ∆ (⇒♦) Γ⇒ ∆, i :ϕ Γ⇒ ∆,♦i

Γ⇒ ∆,♦ϕ

(�⇒) i :ϕ,Γ⇒ ∆ ♦i,Γ⇒ ∆
�ϕ,Γ⇒ ∆ (⇒�)1 ♦i,Γ⇒ ∆, i :ϕ

Γ⇒ ∆,�ϕ

(↓⇒)
i, ϕ[x/i],Γ⇒ ∆
i, ↓xϕ, Γ⇒ ∆ (⇒↓) i,Γ⇒ ∆, ϕ[x/i]

i,Γ⇒ ∆, ↓xϕ

Side condition:

1. where i does not occur in Γ ∪∆ ∪ {ϕ}.



Features of SC:

• No restriction on formulae in sequents

• cut is admissible

(Cut) Γ⇒ ∆, ϕ ϕ,Γ⇒ ∆
Γ⇒ ∆



ORDINARY NATURAL DEDUCTION FOR KH

1. Standard ND-system for CPL

Inference rules

(αE) α / αi, where i ∈ {1,2}

(αI) α1 , α2 / α

(βE) β , −βi / βj , where i 6= j ∈ {1,2}

(βI) βi / β , where i ∈ {1,2}

α α1 α2 β β1 β2
ϕ ∧ ψ ϕ ψ ¬(ϕ ∧ ψ) ¬ϕ ¬ψ

¬(ϕ ∨ ψ) ¬ϕ ¬ψ ϕ ∨ ψ ϕ ψ
¬(ϕ→ ψ) ϕ ¬ψ ϕ→ ψ ¬ϕ ψ



(⊥) ϕ , −ϕ / ⊥

(¬¬) ¬¬ϕ / ϕ

Proof Construction rules

[COND] If Γ,−βi ` βj, then Γ ` β

[RED] if Γ, −ϕ ` ⊥, then Γ ` ϕ

Γ Γ

i SHØW: β i SHØW: ϕ

i+ 1 −βi
·
·

k βj

i+ 1 −ϕ
·
·

k ⊥



2. Fitch-style ND-rules for K

[NEC] If Γ ` ν, then �Γ ` νi

[POS] if Γ, π1 ` π2, then �Γ, πi1 ` π
i
2

where �Γ = {�ϕ : ϕ ∈ Γ} ∪ {¬♦ϕ : ¬ϕ ∈ Γ}

�Γ �Γ ∪ {πi1}

i SHØW: νi i SHØW: πi2

Γ
·
·

k ν

i+ 1 π1
Γ
·

k π2

πi νi π = ν
♦ϕ �ϕ ϕ
¬�ϕ ¬♦ϕ ¬ϕ



3. Inference Hybrid rules:

(S −D) ¬i : ϕ // i : ¬ϕ

(⊥ :) i : ⊥ // ⊥

(: I) i, ϕ / i : ϕ

(: E) i, i : ϕ / ϕ

(I : E) j : i : ϕ // i : ϕ

(Ref) ∅ / i : i

(♦E) ♦i : ϕ / i : ϕ

(�I) i : ϕ / �i : ϕ

(`: E) i : ϕ / ϕ, provided ` i : ϕ



4. Hybrid Proof construction rules

[:I] If Γ ` ϕ, then i : Γ ` i : ϕ, where
i : Γ = {i : ϕ : ϕ ∈ Γ}

[: �] if Γ, i : ♦j ` j : ϕ, then Γ ` i : �ϕ, where
j is not in ϕ or in any undischarged assumption
in Γ

i : Γ Γ

i SHØW: i : ϕ i SHØW: i : �ϕ

Γ
·
·

k ϕ

i+ 1 i : ♦j
Γ
·

k j : ϕ



1 SHØW: i : j ∧ j : p→ i : p [6, COND]
2 i : j ∧ j : p ass.
3 i : j (2, αE)
4 j : p (2, αE)
5 i : j : p (4, I : E)
6 SHØW: i : p [9, : I]
7 j : p (5, Reit.)
8 j (3, Reit.)
9 p (7,8 : E)

1 SHØW: i : �p ∧ i : ♦j → j : p [13, COND]
2 i : p ∧ i : ♦j ass.
3 i : �p (2, αE)
4 i : ♦j (2, αE)
5 SHØW: i : j : p [12, : I]
6 �p (3, Reit.)
7 ♦j (4, Reit.)
8 SHØW: ♦j : p [11, POS]
9 j Mod.ass.
10 p (6, Reit.)
11 j : p (9,10 : I)
12 j : p (8,♦E)
13 j : p (5, I : E)



BRAUNER’S NATURAL DEDUCTION FOR
KH↓

1. Inference rules

(∧E) i : (ϕ ∧ ψ) / i : ϕ, i : ψ

(∧I) i : ϕ, i : ψ / i : (ϕ ∧ ψ)

(→ E) i : (ϕ→ ψ), i : ϕ / i : ψ

(⊥I) i : ⊥ / j : ⊥

(: I) i : ϕ / j : i : ϕ

(: E) j : i : ϕ / i : ϕ

(Ref) ∅ / i : i

(Nom1) i : j, i : ϕ / j : ϕ, where ϕ ∈ AT

(Nom2) i : j, i : ♦k / j : ♦k

(�E) i : �ϕ, i : ♦j / j : ϕ



2. Proof construction rules

[Cond] If Γ, i : ϕ ` i : ψ, then Γ ` i : ϕ→ ψ

[RAA] If Γ, i : ¬ϕ ` i : ⊥, then Γ ` i : ϕ, where
ϕ ∈ V AR

[�] if Γ, i : ♦j ` j : ϕ, then Γ ` i : �ϕ, where j
is not in ϕ or in any undischarged assumption
in Γ

for ↓ we need:

(↓ E) i :↓ xϕ, i : j / j : ϕ[x/j]

[↓ I] if Γ, i : j ` j : ϕ[x/j], then Γ ` i :↓ xϕ,
where j is not in ϕ or in any undischarged as-
sumption in Γ



Remarks:

1. It is Sat-Calculus, since it is defined on sat-
formulae only. Sufficient generality of such ap-
proach follows from from the admissibility of:

(NAME) ` i : ϕ / ` ϕ if i /∈ ϕ

So if we want to prove a thesis ϕ which is not
sat-formula we must try to prove i : ϕ with
i /∈ ϕ.

2. The calculus is ¬-free, with ⊥ instead, we
can add suitable rules.

3. Normalization theorem holds



TABLEAU SYSTEMS

(¬) ¬i : ¬ϕ / i : ϕ and i : ¬ϕ / ¬i : ϕ

(¬⊥) ¬i : ⊥ / >

(¬>) ¬i : > / ⊥

(α) α / α1, α2, see α below

(β) β / β1 ‖ β2, see β below

α α1 α2
i : (ϕ ∧ ψ) i : ϕ i : ψ
¬i : (ϕ ∨ ψ) ¬i : ϕ ¬i : ψ
¬i :(ϕ→ ψ) i : ϕ ¬i : ψ

β β1 β2
¬i : (ϕ ∧ ψ) ¬i : ϕ ¬i : ψ
i : (ϕ ∨ ψ) i : ϕ i : ψ
i :(ϕ→ ψ) ¬i : ϕ i : ψ



(: E) j : i : ϕ / i : ϕ

(¬ : E) ¬j : i : ϕ / ¬i : ϕ

(Ref) ∅ / i : i provided i is on the branch

(Nom) i : j, i : ϕ / j : ϕ

(Bridge) i : j, k : ♦i / k : ♦j

(�E) i : �ϕ, i : ♦j / j : ϕ

(¬�E) ¬i : �ϕ / i : ♦j, ¬j : ϕ, j new on the
branch

(♦E) i : ♦ϕ / i : ♦j, j : ϕ, j new on the branch

(¬♦E) ¬i : ♦ϕ, i : ♦j / ¬j : ϕ

(↓ E) i :↓ xϕ / i : ϕ[x/i]

(¬ ↓ E) ¬i :↓ xϕ / ¬i : ϕ[x/i]



HYLORES

(Res) Γ, i : ϕ ; ∆, i : ¬ϕ / Γ,∆

(∧) Γ, i : ϕ ∧ ψ / Γ, i : ϕ ; Γ, i : ψ

(∨) Γ, i : ϕ ∨ ψ / Γ, i : ϕ, i : ψ

(♦) Γ, i : ♦ϕ / Γ, i : ♦j ; Γ, j : ϕ , where j is a
new nominal and ϕ /∈ NOM

(�) Γ, i : ♦j ; ∆, i : �ϕ / Γ,∆, j : ϕ

(:) Γ, i : j : ϕ / Γ, j : ϕ

(Ref) Γ, i : ¬i / Γ

(Sym) Γ, i : j / Γ, j : i

(Param) Γ, i : j ; ∆, ϕ(i) / Γ,∆, ϕ(i/j)



Note that:

1. It is Resolution sat-calculus i.e. defined on
clauses containing only sat-formulae.

2. Clauses are in generalised form; they contain
not only literals prefixed with i : but any sat-
formulae. ";" is used to separate clauses (it
works like metalinguistic ∧) and "," is used to
separate elements in clauses (works like ∨).

3. All the formulae are assumed in negation
normal form, so rules for negation are dispen-
sable.

4. conditions on selection etc. are omitted in
the above presentation.



RND – RESOLUTION BASED ND

ND sat-calculus defined on generalised clauses
consists of:

1. Sat-versions of classical inference rules

(W) Γ / Γ, i : ϕ

(¬) Γ,¬i : ϕ // Γ, i : ¬ϕ

(Rez) Γ, i : ϕ ; Γ, i : −ϕ / Γ

(NN) Γ, i : ¬¬ϕ // Γ, i : ϕ

(α) Γ, i : α // Γ, i : α1 ; Γ, i : α2

(β) Γ, i : β // Γ, i : β1, i : β2



2. Modal inference rules

(πi) Γ, i : πi / Γ, i : ♦ij ; Γ, j : π, where j is new
nominal in derivation

(νi) Γ, i : νi ; ∆, i : ♦ij / Γ,∆, j : ν

(:) Γ, i : j : ϕ / Γ, j : ϕ

(:¬) Γ, i : ¬j : ϕ / Γ,¬j : ϕ

(Ref) Γ, i : ¬i / Γ

(Sym) Γ, i : j / Γ, j : i

(Nom) Γ, i : j ; ∆, j : ϕ / Γ,∆, i : ϕ

(Bridge) Γ, i : j ; ∆, k : ♦ii / Γ,∆, k : ♦ij



3. One proof-construction rule:

[Sub] if X;−ϕ1; . . . ;−ϕi / ∆ , then X / Γ ,
where: Γ is nonempty, ∆ ⊆ Γ, {ϕ1, ..., ϕi} ⊆ Γ,
i ≥0.

note: every ϕ in the schema is a sat-formula
and X is a set of generalised clauses built from
sat-formulae only.

X

k SHØW: Γ

k+ 1 −ϕ1
· ·
· ·
k+ i −ϕi
· ·
· ·
n ∆



Universality, generality and simplicity of RND

1. [Sub] is sufficiently general to cover all ND
proof construction rules. In particular [Cond] is
admissible as the following schema shows:

X
k SHØW: β [n+ 1, Sub]
k+ 1 SHØW: βi, βj [n, Sub]
k+ 2 −βi z

...
n βj (k+ 2, . . .)
n+ 1 β (k+ 1, βD′)

2. RND can simulate and combine proof search
procedures from Resolution and Tableau based
systems (like KE). It is due to the fact that
RND applies Cut in both directions.

3. RND allows for extremely short and simple
proofs – in classical logic no need of subderi-
vations.



Examples

1 SHØW: p ∨ (q ∧ r) → (p ∨ q) ∧ (p ∨ r) [8, Cond]
2 p ∨ (q ∧ r) ass
3 p, q ∧ r (2, β)
4 p, q (3, α)
5 p, r (3, α)
6 p ∨ q (4, β)
7 p ∨ r (5, β)
8 (p ∨ q) ∧ (p ∨ r) (6,7, α)

1 SHØW: ¬(p→ (q → r)), p→ r, p ∧ ¬q [10, Sub]
2 p→ (q → r) ass
3 ¬(p→ r) ass
4 ¬p, q → r (2, β)
5 ¬p,¬q, r (4, β)
6 p (3, α)
7 ¬r (3, α)
8 ¬q, r (5,6, Rez)
9 ¬q (7,8, Rez)
10 p ∧ ¬q (6,9, α)



Comments on cut application

1. Resolution is a special case of forwards-
application of Cut.

(Res) Γ, ϕ − ϕ,∆
Γ,∆

2. In tableau systems we can have backwards-
application of Cut e.g. in Hintikka-style sys-
tems it has a form:

(B − Cut) Γ
Γ, ϕ | Γ,−ϕ

3. Some systems (Davis-Putnam procedure,
KE) involve both forms of Cut but in a ve-
ry limited special way. In RND we have both
forms in full generality since we have resolution
(F-Cut) and [Sub] can simulate (B-Cut).



Extensions

We can provide 3 forms of rules:

• with 1-parameter-formula ϕ

(1R-A) Γ, ϕ / Γ

• with 2-parameter-formulae ϕ and ψ

(2Exp-A) Γ, ϕ / Γ, ψ or

(2R-A) Γ, ϕ ; ∆,−ψ / Γ,∆

• with 3-parameter-formulae ϕ,ψ and χ

(3Exp-A) Γ, ϕ / Γ, ψ, χ or

(3RExp-A) Γ, ϕ ; ∆,−ψ / Γ,∆, χ or

(3R-A) Γ, ϕ ; ∆,−ψ ; Σ,−χ / Γ,∆,Σ



Theorem: Rules of the type (2Exp-A), (2R-A)
and (3RExp-A), (3Exp-A), (3R-A) are inter-
derivable

axiom ϕ ψ χ
(DC) i : ♦j ¬i : ♦k j : k
(T) ¬i : ♦i – –
(I) i : ♦i – –
(4) i : ♦j ¬j : ♦k i : ♦k
(5) i : ♦j ¬i : ♦k j : ♦k
(B) i : ♦j j : ♦i –
(As) i : ♦j ¬j : ♦i –
(As’) i : ♦j ¬j : ♦i i : j
(L) ¬i : ♦j j : ♦i –
(L’) ¬i : ♦j j : ♦i i : j
(3) i : ♦j ¬i : ♦k j : ♦k, k : ♦j
(3’) i : ♦j ¬i : ♦k j : ♦k, k : ♦j, j : k

Note that for (3) and (3’) we have χ1, χ2 and
χ1, χ2, χ3 respectively instead of single χ. For
instance (3RExp-3’) has a form Γ, ϕ ; ∆,−ψ /
Γ,∆, χ1, χ2, χ3.



Example

1 SHØW: 1 : (2 → �(♦2 → 2)) [12, Sub]
2 ¬1 : (2 → �(♦2 → 2)) ass
3 1 : 2 (2, α)
4 1 : ¬�(♦2 → 2) (2, α)
5 1 : ♦3 (4, πi)
6 3 : ¬(♦2 → 2) (4, πi)
7 3 : ♦2 (6, α)
8 3 : ¬2 (6, α)
9 ¬3 : 2 (8, NN)
10 2 : 1 (3, Sym)
11 2 : ♦3 (10,5, Nom)
12 ⊥ (7,11,9,

3R−As′)



Nominal existence rules

(HRDN-4C) Γ, i : ♦j / Γ, i : ♦k ; Γ, k : ♦j ,
where k is a new nominal

(HRDN-CR) Γ, i : ♦j ; ∆, i : ♦k / Γ,∆, j : ♦l ;
Γ,∆, k : ♦l, where l is a new nominal

1 SHØW: 1 : (♦�2 → �♦2) [13, Sub]
2 ¬1 : (♦�2 → �♦2) ass
3 1 : ♦�2 (2, α)
4 1 : ¬�♦2 (2, α)
5 1 : ♦3 (3, πi)
6 3 : �2 (3, πi)
7 1 : ♦4 (4, πi)
8 4 : ¬♦2 (4, πi)
9 3 : ♦5 (5,7, HRDN − CR)
10 4 : ♦5 (5,7, HRDN − CR)
11 5 : 2 (6,9, νi)
12 5 : ¬2 (8,10, νi)
13 ⊥ (11,12, Rez)
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