SEQUENT CALCULI FOR WEAK MODAL LOGICS

Andrzej Indrzejczak

Department of Logic University of Łódź Kopcińskiego 16/18 90–232 Łódź Poland

e-mail: indrzej@filozof.uni.lodz.pl

Basic rules and axioms

RE if $\varphi \leftrightarrow \psi \in \mathbf{L}$, then $\Box \varphi \leftrightarrow \Box \psi \in \mathbf{L}$

RM if $\varphi \to \psi \in \mathbf{L}$, then $\Box \varphi \to \Box \psi \in \mathbf{L}$

RC if $\varphi \wedge \psi \to \chi \in \mathbf{L}$, then $\Box \varphi \wedge \Box \psi \to \Box \chi \in \mathbf{L}$

RR if $\wedge \Gamma \to \psi \in \mathbf{L}$, then $\wedge \Box \Gamma \to \Box \psi \in \mathbf{L}$, where $\Gamma \neq \varnothing$

RN if $\varphi \in \mathbf{L}$, then $\Box \varphi \in \mathbf{L}$

$$\mathsf{M} \quad \Box(\varphi \wedge \psi) \to \Box \varphi \wedge \Box \psi$$

$$C \square \varphi \wedge \square \psi \rightarrow \square (\varphi \wedge \psi)$$

$$\mathsf{K} \ \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$$

 N $\Box \top$

Modal Logics

Every **L** containing **CPL** and closed wrt RE is congruent (classical)

Every **L** containing **CPL** and closed wrt RM is monotonic (or every congruent **L** containing M)

Every L containing CPL and closed wrt RR is regular (or every monotonic L containing C)

Every regular L closed wrt RN is normal

Hierarchy

Let **E** denote the weakest congruent logic, **M**— the weakest monotonic, **R** — the weakest regular, and **K** — the weakest normal logic.

The Big Five

$$\bullet \ \ \mathsf{D} \quad \Box \varphi \to \neg \Box \neg \varphi$$

$$\bullet$$
 T $\Box \varphi \rightarrow \varphi$

• 4
$$\Box \varphi \rightarrow \Box \Box \varphi$$

$$\bullet$$
 B $\varphi \to \Box \neg \Box \neg \varphi$

• 5
$$\neg \Box \varphi \rightarrow \Box \neg \Box \varphi$$

The Dependence Theorem

$$CPL + T \vdash D$$

$$CPL + T + 5 \vdash B$$

CPL + *D* + 4 + *B*
$$\vdash$$
 T

$$E + T + 5 \vdash 4$$

$$E + B + 4 + D \vdash 5$$
 $M + B + 4 \vdash 5$

$$E + B + 5 + T \vdash 4$$
 $M + B + 5 \vdash 4$

$$\mathbf{E} + B + T \vdash N$$
 $\mathbf{M} + B \vdash N$

There is 18 different E-logics, 15 M-logics, 16 EN-logics and 10 MN-logics axiomatized with D, T, 4, B, 5 over **E** and **M** with possibly RN added

SC-CPL - rules

$$(AX) \quad \varphi \Rightarrow \varphi$$

$$(Cut) \quad \frac{\Gamma \Rightarrow \Delta, \varphi \quad \varphi, \Pi \Rightarrow \Sigma}{\Gamma, \Pi \Rightarrow \Delta, \Sigma}$$

$$(W\Rightarrow)$$
 $\xrightarrow{\Gamma\Rightarrow\Delta}$ $\xrightarrow{\varphi,\Gamma\Rightarrow\Delta}$

$$(\Rightarrow W) \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \varphi}$$

$$(C \Rightarrow) \quad \frac{\varphi, \varphi, \Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta}$$

$$(\Rightarrow C) \quad \frac{\Gamma \Rightarrow \Delta, \varphi, \varphi}{\Gamma \Rightarrow \Delta, \varphi}$$

$$(\neg \Rightarrow) \quad \frac{\Gamma \Rightarrow \Delta, \varphi}{\neg \varphi, \Gamma \Rightarrow \Delta}$$

$$(\Rightarrow \neg) \quad \frac{\varphi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg \varphi}$$

$$(\wedge \Rightarrow) \ \frac{\varphi, \psi, \Gamma \Rightarrow \Delta}{\varphi \land \psi, \Gamma \Rightarrow \Delta}$$

$$(\Rightarrow \land) \ \frac{\Gamma \Rightarrow \Delta, \varphi \ \Pi \Rightarrow \Sigma, \psi}{\Gamma, \Pi \Rightarrow \Delta, \Sigma, \varphi \land \psi}$$

$$(\vee \Rightarrow) \ \frac{\varphi, \Gamma \Rightarrow \Delta}{\varphi \lor \psi, \Gamma, \Pi \Rightarrow \Delta, \Sigma}$$

$$(\Rightarrow \vee) \ \frac{\Gamma \Rightarrow \Delta, \varphi, \psi}{\Gamma \Rightarrow \Delta, \varphi \vee \psi}$$

$$(\rightarrow \Rightarrow) \ \frac{\Gamma \Rightarrow \Delta, \varphi \ \psi, \Pi \Rightarrow \Sigma}{\varphi \rightarrow \psi, \Gamma, \Pi \Rightarrow \Delta, \Sigma}$$

$$(\Rightarrow \to) \frac{\varphi, \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \to \psi}$$

General Rules

(E)
$$\frac{\varphi \Rightarrow \psi \quad \psi \Rightarrow \varphi}{\Box \varphi \Rightarrow \Box \psi}$$
 (M) $\frac{\varphi \Rightarrow \psi}{\Box \varphi \Rightarrow \Box \psi}$

(C)
$$\frac{\varphi, \ \psi \Rightarrow \chi \quad \chi \Rightarrow \varphi \quad \chi \Rightarrow \psi}{\Box \varphi, \ \Box \psi \Rightarrow \Box \chi}$$

$$(\mathsf{N}) \ \ \frac{\Rightarrow \varphi}{\Rightarrow \Box \varphi} \qquad \qquad (\mathsf{T}) \ \ \frac{\varphi, \ \Gamma \Rightarrow \Delta}{\Box \varphi, \ \Gamma \Rightarrow \Delta}$$

corresponding to:

RE
$$\varphi \leftrightarrow \psi / \Box \varphi \leftrightarrow \Box \psi$$

RM
$$\varphi \to \psi / \Box \varphi \to \Box \psi$$
 (or to M $\Box (\varphi \land \psi) \to \Box \varphi \land \Box \psi$)

RC
$$\varphi, \psi \to \chi / \Box \varphi, \Box \psi \to \Box \chi$$
 (or to C $\Box \varphi \land \Box \psi \to \Box (\varphi \land \psi)$)

RN
$$\varphi$$
 / $\Box \varphi$ (or to N $\Box \top$)

$$T \square \varphi \rightarrow \varphi$$

Special Rules

(D-2)
$$\Rightarrow \varphi, \psi \quad \varphi, \psi \Rightarrow \\ \Box \varphi, \Box \psi \Rightarrow$$
 (D) $\varphi, \psi \Rightarrow \\ \Box \varphi, \Box \psi \Rightarrow$

(D)
$$\frac{\varphi, \psi \Rightarrow}{\Box \varphi, \Box \psi \Rightarrow}$$

$$(4-2) \quad \frac{\Box \varphi \Rightarrow \psi \quad \psi \Rightarrow \Box \varphi}{\Box \varphi \Rightarrow \Box \psi}$$

$$(4) \quad \frac{\Box \varphi \Rightarrow \psi}{\Box \varphi \Rightarrow \Box \psi}$$

$$(5-2) \quad \xrightarrow{\Rightarrow \ \Box\varphi, \psi \quad \Box\varphi, \psi \Rightarrow} \\ \Rightarrow \Box\varphi, \Box\psi$$

$$(5) \quad \stackrel{\Rightarrow \Box \varphi, \psi}{\Rightarrow \Box \varphi, \Box \psi}$$

(B-2)
$$\Rightarrow \Box \varphi, \psi \Box \varphi, \psi \Rightarrow \Rightarrow \varphi, \Box \psi$$

(B)
$$\Rightarrow \Box \varphi, \psi \Rightarrow \varphi, \Box \psi$$

corresponding to:

• D
$$\Box \varphi \rightarrow \neg \Box \neg \varphi$$

• 4
$$\Box \varphi \rightarrow \Box \Box \varphi$$

• 5
$$\neg \Box \varphi \rightarrow \Box \neg \Box \varphi$$

• B
$$\varphi \to \Box \neg \Box \neg \varphi$$

Equivalence of the systems

The case of 5 and (5-2)

(5-2) implies 5

$$(\Rightarrow \neg) \frac{\Box \varphi \Rightarrow \Box \varphi}{\Rightarrow \Box \varphi, \neg \Box \varphi} \frac{\Box \varphi \Rightarrow \Box \varphi}{\Box \varphi, \neg \Box \varphi \Rightarrow} (\neg \Rightarrow)$$

$$\frac{\Rightarrow \Box \varphi, \Box \neg \Box \varphi}{\Rightarrow \Box \neg \Box \varphi} (\neg \Rightarrow)$$

$$\frac{\neg \Box \varphi \Rightarrow \Box \neg \Box \varphi}{\Rightarrow \neg \Box \varphi} (\Rightarrow \rightarrow)$$

(E) + 5 implies (5-2)

$$\begin{array}{cccc}
\mathcal{D} & (\neg \Rightarrow) & \frac{\Rightarrow \Box \varphi, \psi}{\neg \Box \varphi \Rightarrow \psi} & \frac{\Box \varphi, \psi \Rightarrow}{\psi \Rightarrow \neg \Box \varphi} (\Rightarrow \neg) \\
\hline
\neg \Box \varphi \Rightarrow \Box \neg \Box \varphi & & \Box \neg \Box \varphi \Rightarrow \Box \psi \\
& \frac{\neg \Box \varphi \Rightarrow \Box \psi}{\Rightarrow \Box \psi, \neg \neg \Box \varphi} (\Rightarrow \neg) \\
\hline
& \Rightarrow \Box \psi, \neg \neg \Box \varphi
\end{array}$$

Additional Rules

$$(\mathsf{D'-2}) \ \stackrel{\Rightarrow \varphi, \psi}{\Rightarrow \Box \varphi, \Box \psi} \ \varphi, \psi \Rightarrow \\ (\mathsf{D'}) \ \stackrel{\Rightarrow \varphi, \psi}{\Rightarrow \Box \varphi, \Box \psi}$$

(D')
$$\Rightarrow \varphi, \psi$$

 $\Rightarrow \Box \varphi, \Box \psi$

$$(4'-2) \quad \frac{\varphi \Rightarrow \Box \psi \quad \Box \psi \Rightarrow \varphi}{\Box \varphi \Rightarrow \Box \psi}$$

$$(4') \quad \frac{\varphi \Rightarrow \Box \psi}{\Box \varphi \Rightarrow \Box \psi}$$

$$(5'-2) \Rightarrow \Box \varphi, \psi \quad \Box \varphi, \psi \Rightarrow \Box \varphi, \Box \psi \Rightarrow$$

(5')
$$\frac{\Box \varphi, \psi \Rightarrow}{\Box \varphi, \Box \psi \Rightarrow}$$

(B'-2)
$$\Rightarrow \Box \varphi, \psi \Box \varphi, \psi \Rightarrow \varphi, \Box \psi \Rightarrow$$

(B')
$$\frac{\Box \varphi, \psi \Rightarrow}{\varphi, \Box \psi \Rightarrow}$$

corresponding to:

• D'
$$\neg \Box \neg \varphi \rightarrow \Box \varphi$$

• 4'
$$\Box\Box\varphi\to\Box\varphi$$

• 5'
$$\Box \neg \Box \varphi \rightarrow \neg \Box \varphi$$

$$\bullet$$
 B' $\Box \neg \Box \neg \varphi \rightarrow \varphi$

Cut-elimination

In the class of M-logics cut is admissible in: SC-M, SC-MD, SC-MT, SC-M4, SC-M5, SC-MT4, SC'-MD4, SC-M45, SC'-MD45; the same holds for respective MN-logics

In the class of E-logics cut is admissible in: SC-E, SC-ED, SC-ET, SC-E5, SC-ET4; the same holds for EN-logics except SC-END

- 1. Both **E5** and **M5** (and their N-counterparts) have cut-free formalization in contrast to **R5** and **K5**
- 2. Neither **ED5** nor **MD5** (and their N-counterparts) have cut-free formalisation
- 3. Cut-elimination fails for all B-logics
- 4. In E-logics cut-elimination fails for almost all 4-logics (the exception is **ET4** in contrast to M-logics

Decision procedures for M-logics

$$\Gamma, \ \Box \varphi_1, ..., \Box \varphi_l \Rightarrow \Box \psi_1, ..., \Box \psi_k, \ \Delta,$$

where $\Gamma \cup \Delta \subseteq VAR$, $\Gamma \cap \Delta = \emptyset$ and l + k > 0

Characteristic sets of sequents:

$$\mathcal{S}_M = \{ \varphi_i \Rightarrow \psi_j : i \leq l, j \leq k \}$$

$$\mathcal{S}_4 = \{ \Box \varphi_i \Rightarrow \psi_j : i \leq l, j \leq k \}$$

$$\mathcal{S}_5 = \{ \Rightarrow \psi_i, \ \psi_j \ : \ i \le k, \ j \le k \}$$

$$S_D = \{\varphi_i, \ \varphi_j \Rightarrow : \ i \le l, \ j \le l\}$$

$$\mathcal{S}_{D5} = \{ \varphi_i \Rightarrow \Box \psi_j : i \leq l, j \leq k \}$$

$$\mathcal{S}_{D4} = \{ \varphi_i, \ \Box \varphi_j \Rightarrow : \ i \leq l, \ j \leq l \}$$

 \mathcal{S}_L - The set of subproof generators for each logic having cut-free formalization:

Calculus	C
Calculus	$\mid \mathcal{S}_L \mid$
SC-M	$ \mathcal{S}_{M} $
SC-MT	$\mid \mathcal{S}_{M} \mid$
SC-MD	$ \mathcal{S}_M \cup \mathcal{S}_D $
SC-M4	$S_M \cup S_4$
SC-MT4	$S_M \cup S_4$
SC-M5	$S_M \cup S_5$
SC*-MD4	$S_M \cup S_D \cup S_4 \cup S_{D4}$
SC-M45	$S_M \cup S_4 \cup S_5$
SC*-MD45	$S_M \cup S_D \cup S_4 \cup S_5 \cup S_{D4} \cup S_{D5}$

The meta-rule of Subtree Generation (SG)

(SG)
$$\frac{\mathcal{S}_L}{\Gamma, \ \Box \varphi_1, ..., \Box \varphi_l \Rightarrow \Box \psi_1, ..., \Box \psi_k, \ \Delta}$$

Note! In **MD4** and **MD45** possible loops due to repetition of sequents of the form φ , $\Box \varphi \Rightarrow$ (cf. the definition of S_{D4}) but in **M4**, **MT4**, **M45** no risk of infinite branches!